21 research outputs found

    Low-Rank Inducing Norms with Optimality Interpretations

    Full text link
    Optimization problems with rank constraints appear in many diverse fields such as control, machine learning and image analysis. Since the rank constraint is non-convex, these problems are often approximately solved via convex relaxations. Nuclear norm regularization is the prevailing convexifying technique for dealing with these types of problem. This paper introduces a family of low-rank inducing norms and regularizers which includes the nuclear norm as a special case. A posteriori guarantees on solving an underlying rank constrained optimization problem with these convex relaxations are provided. We evaluate the performance of the low-rank inducing norms on three matrix completion problems. In all examples, the nuclear norm heuristic is outperformed by convex relaxations based on other low-rank inducing norms. For two of the problems there exist low-rank inducing norms that succeed in recovering the partially unknown matrix, while the nuclear norm fails. These low-rank inducing norms are shown to be representable as semi-definite programs. Moreover, these norms have cheaply computable proximal mappings, which makes it possible to also solve problems of large size using first-order methods

    On second-order cone positive systems

    Full text link
    Internal positivity offers a computationally cheap certificate for external (input-output) positivity of a linear time-invariant system. However, the drawback with this certificate lies in its realization dependency. Firstly, computing such a realization requires to find a polyhedral cone with a potentially high number of extremal generators that lifts the dimension of the state-space representation, significantly. Secondly, not all externally positive systems posses an internally positive realization. Thirdly, in many typical applications such as controller design, system identification and model order reduction, internal positivity is not preserved. To overcome these drawbacks, we present a tractable sufficient certificate of external positivity based on second-order cones. This certificate does not require any special state-space realization: if it succeeds with a possibly non-minimal realization, then it will do so with any minimal realization. While there exist systems where this certificate is also necessary, we also demonstrate how to construct systems, where both second-order and polyhedral cones as well as other certificates fail. Nonetheless, in contrast to other realization independent certificates, the present one appears to be favourable in terms of applicability and conservatism. Three applications are representatively discussed to underline its potential. We show how the certificate can be used to find externally positive approximations of nearly externally positive systems and demonstrated that this may help to reduce system identification errors. The same algorithm is used then to design state-feedback controllers that provide closed-loop external positivity, a common approach to avoid over- and undershooting of the step response. Lastly, we present modifications to generalized balanced truncation such that external positivity is preserved where our certificate applies

    Local Convergence of Proximal Splitting Methods for Rank Constrained Problems

    Full text link
    We analyze the local convergence of proximal splitting algorithms to solve optimization problems that are convex besides a rank constraint. For this, we show conditions under which the proximal operator of a function involving the rank constraint is locally identical to the proximal operator of its convex envelope, hence implying local convergence. The conditions imply that the non-convex algorithms locally converge to a solution whenever a convex relaxation involving the convex envelope can be expected to solve the non-convex problem.Comment: To be presented at the 56th IEEE Conference on Decision and Control, Melbourne, Dec 201

    Rank Reduction with Convex Constraints

    Get PDF
    This thesis addresses problems which require low-rank solutions under convex constraints. In particular, the focus lies on model reduction of positive systems, as well as finite dimensional optimization problems that are convex, apart from a low-rank constraint. Traditional model reduction techniques try to minimize the error between the original and the reduced system. Typically, the resulting reduced models, however, no longer fulfill physically meaningful constraints. This thesis considers the problem of model reduction with internal and external positivity constraints. Both problems are solved by means of balanced truncation. While internal positivity is shown to be preserved by a symmetry property; external positivity preservation is accomplished by deriving a modified balancing approach based on ellipsoidal cone invariance.In essence, positivity preserving model reduction attempts to find an infinite dimensional low-rank approximation that preserves nonnegativity, as well as Hankel structure. Due to the non-convexity of the low-rank constraint, this problem is even challenging in a finite dimensional setting. In addition to model reduction, the present work also considers such finite dimensional low-rank optimization problems with convex constraints. These problems frequently appear in applications such as image compression, multivariate linear regression, matrix completion and many more. The main idea of this thesis is to derive the largest convex minorizers of rank-constrained unitarily invariant norms. These minorizers can be used to construct optimal convex relaxations for the original non-convex problem. Unlike other methods such as nuclear norm regularization, this approach benefits from having verifiable a posterior conditions for which a solution to the convex relaxation and the corresponding non-convex problem coincide. It is shown that this applies to various numerical examples of well-known low-rank optimization problems. In particular, the proposed convex relaxation performs significantly better than nuclear norm regularization. Moreover, it can be observed that a careful choice among the proposed convex relaxations may have a tremendous positive impact on matrix completion. Computational tractability of the proposed approach is accomplished in two ways. First, the considered relaxations are shown to be representable by semi-definite programs. Second, it is shown how to compute the proximal mappings, for both, the convex relaxations, as well as the non-convex problem. This makes it possible to apply first order method such as so-called Douglas-Rachford splitting. In addition to the convex case, where global convergence of this algorithm is guaranteed, conditions for local convergence in the non-convex setting are presented. Finally, it is shown that the findings of this thesis also extend to the general class of so-called atomic norms that allow us to cover other non-convex constraints

    On optimal low-rank approximation of non-negative matrices

    Get PDF
    For low-rank Frobenius-norm approximations of matrices with non-negative entries, it is shown that the Lagrange dual is computable by semi-definite programming. Under certain assumptions the duality gap is zero. Even when the duality gap is non-zero, several new insights are provided

    A Symmetry Approach for Balanced Truncation of Positive Linear Systems

    Get PDF
    We consider model order reduction of positive linear systems and show how a symmetry characterization can be used in order to preserve positivity in balanced truncation. The reduced model has the additional feature of being symmetric
    corecore